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Stability Analysis of a Tethered Aerostat

Casey Lambert¤ and Meyer Nahon†

McGill University, Montreal, Quebec H3A 2K6, Canada

This paper presents a dynamics analysis of a streamlined aerostat tethered to the ground by a single tether. A
nonlinear dynamics model of this system is � rst assembled. The tether is modeled using a lumped mass approach,
and the viscoelastic properties of the tether are included. The aerostat is modeled using a component breakdown
approach. The dynamics equations of the cable and aerostat are then assembled into a single system of nonlinear
differential equations. A linearization of this system is then performed using a � nite difference approach. The
resulting linear equations of motions are decoupled into longitudinal and lateral subsets. The stability properties
of each subset is then studied as a function of wind speed. The effect of varying tether length is also investigated.

Nomenclature
A = hull cross-sectionalarea or � n aspect ratio
A, Alat , Along = state matrices for complete system, lateral

and longitudinal subsystems
A f = � n planform area
Ah = cross-sectionalarea of hull at » D lh

At = tether cross-sectionalarea
aB = aerostat mass-center acceleration
b; bc = tether damping coef� cient and critical

damping coef� cient
.Cdh/0, .Cdc/h = hull zero-angle axial and cross� ow

drag coef� cients
CD; CD0 = � n drag coef� cient, � n parasitic

drag coef� cient
Cd = normal drag coef� cient of cable element
CL = � n lift coef� cient
Cl® ; CL® = slope of the two-dimensional lift curve,

slope of the three-dimensional lift curve
D; DH ; Dt = drag force, hull drag force, tether drag force
dt = tether diameter
E = Young’s modulus of the cable
e = Oswald’s ef� ciency factor
FB = net force applied to aerostat
Fb = buoyancy force
Fi = force from the body component i

(i D H; P; S; U representing the hull, port
� n, starboard � n, and upper � n, respectively)

Ft = force from the tether
g = gravitational acceleration
I = inertia tensor for aerostat
I1, I3 , J1 , J2 = hull-related geometric quantities
k1, k3 = axial and lateral added-mass coef� cients

for hull
L ; L H ; L t = lift force, hull lift force, tether length
lh = distance from aerostat nose to starting

point of tail� ns
li , lu

i = stretched and unstretched length cable
element i

Mi = moment caused by the body component i
(i D H; P; S; U )
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Mnose = moment about the nose acting on hull
Mt = moment from the tether
m; ma ; m e = true mass, added mass, and effective

mass of aerostat
pi D [xi yi zi ]T = position of cable node i
q0 = steady-state dynamic pressure (D½U 2

H =2/

r = hull radius
ri = position vector from mass center to body

component (i D H; P; S; U )
rt = position vector from mass center to tether

attachment point
SH = hull reference area, (D (hull volume)2=3)
Ti = tension in cable element i
Ui D [u i vi wi ]T = velocity of body component i (i D H; P;

S, U) with respect to surrounding air
ui = velocity of geometric center of cable

element i with respect to surrounding air
V = hull volume
VB D [u v w]T = velocity of the aerostat mass center with

respect to ground
Vi = velocity of body component i.i D H; P;

S; U / with respect to ground
W = wind velocity
X, Xlat , Xlong = state vector for complete system, lateral

and longitudinal subsystems
xn = axial distance from nose to the hull

center of pressure
®, ¯ = angle of attack and sideslip angle
° = angle of hull lift force in the y-z plane
" = cable strain
³ = damping ratio
´k = hull ef� ciency factor
µ0 = zero wind pitch angle of aerostat
» = axial distance along hull from the nose
½ , ½t = density of air; density of tether
¿n = period of oscillatory modes
Ã , µ , Á = yaw, pitch, and roll angles
! D [pqr]T = angular velocity of aerostat
!n , !d = natural frequency and damped natural

frequency of oscillatory modes

I. Introduction

T ETHERED aerostats are known to be useful in applications
where a payload must be deployed at altitude for long dura-

tions. In these applications the energy consumed (and the resulting
refueling requirement) by a powered heavier-than-air craft renders
that platform less competitive in relation to an aerostat that con-
sumes no energy. However, tethered aerostats can be dif� cult to
deploy and operate because of their large size, sensitivity to envi-
ronmental conditions, and particular dynamics characteristics.

A group of radio astronomers at the National Research Council
in Canada is interestedin using a tetheredaerostat system to support
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the receiverof a large-scaleradio telescope.1 As part of the proof-of-
concept experiment for this system, they are presently deploying a
tethered aerostat in Penticton, British Columbia, to study its perfor-
mance in this application.A parallel analytical/computationalstudy
is being conducted to study this system’s dynamic characteristics.

Previousdynamics investigationsof tetheredaerostatscan be sep-
arated into nonlinearand linear studies.DeLaurier2 was � rst to study
the nonlinear dynamics of an aerostat attached to a comprehensive
cable model. This initial work considered only two-dimensional
motion and steady-state wind conditions; however, turbulence was
addressed later by DeLaurier.3 The stability of the system was an-
alyzed by showing that the motion decoupled into separate lateral
and longitudinal motions. Lateral instabilities at low wind speeds
were predicted (though later conversationswith the author indicate
these may have been caused by spurious results). Progress with the
dynamics modeling of a tethered aerostat was made by Jones and
Krausman4 when a three-dimensional nonlinear dynamics model
with a lumped mass discretized tether was established. Jones and
DeLaurier5 built on this basic model by introducing a segmented
panel method for modeling the aerostat. This entailed dividing the
aerostat into vertical slices to account for the effects of turbulence
variations along the length of the hull. Another three-dimensional
nonlinear dynamics model of a tethered aerostat was developed by
Humphreys.6 This model used a single partial differential equation
to relate the motion and forces along the tether. Experimental vali-
dationof this dynamicsmodel was achievedby performingtow tank
tests with a scaled model.

In 1973, a linear model of a tethered aerostat was proposed by
Redd et al.7 Experimentaldata were used to validate their model in a
steady wind. A study of the stability of the aerostat was performed,
but the formulation of the linear model neglected the dynamic cross
coupling of the tether and the aerostat. The nonlinear model de-
veloped by Jones and DeLaurier5 was used by Badesha and Jones8

to perform a linear stability analysis of a large commercial aero-
stat by linearizing the equations of motion of the nonlinear model.
This analysis included only pendulum modes and neglected other
modes of motion. The dynamics model developed by Badesha and
Jones showed good agreement with experimental data as presented
by Jones and Shroeder.9 In 1998, Etkin10 used a linear analysis to
study the stability of a towed body. The stability of several different
modes was studied as function of wind speed. Although the gen-
eralized formulation of this approach makes it relevant to a range
of bodies constrained by a cable including that of a buoyant teth-
ered aerostat in a � ow� eld, a detailed study of the dynamics of a
speci� c tethered aerostat is necessary to establish con� dence in the
prediction of the behavior of the system.

The present work focuses on an investigation of the dynamics
of a streamlined aerostat on a single tether using nonlinear model-
ing techniques and a linear stability analysis. The linearization of
the system was performed using a � nite difference approach rather
than a conventional analytical method. The stability analysis in-
cludes several longitudinaland lateral modes and also considers the
cross coupling between the tether and aerostat. Section II discusses
the development of the nonlinear dynamics model of the cable and
aerostat. In Section III, the nonlinear model is linearized numeri-
cally, and the effects on stability of changing the tether length are
investigated.

II. Dynamics Model
A two-dimensional schematic of the system model, which con-

sists of the tether and the aerostat, is shown in Fig. 1. The aerostat
is modeled as a single body at the upper node of the tether, subject
to buoyancy, aerodynamic drag, and gravity.

A. Dynamics of a Streamlined Aerostat
A model of the dynamicsof a streamlinedaerostat was developed

to study its behavior in various wind conditions.The aerostat model
is based on a streamlinedaerostatmanufacturedby Aeros Flightcam
of Canoga Park, California, as shown in Fig. 2. The central goal of
this investigation is to study the stability of the aerostat on a single
tether.

aerostat

node 1

element 1
node 2

element 2

node n

element n node n+1

Wind

Fig. 1 Discrete implementation of tethered aerostat dynamics model.

Fig. 2 Aeros Flightcam aerostat.

The parameters of interest of this study are the motion of the
aerostatand the forcesgeneratedduring its motion.The outputof the
simulation is the translational and rotational position and velocity
of the aerostat as well as the tether tension while the input is a set
of initial conditions and a wind � eld. The aerostat is considered to
be rigid and is capable of full six degrees of freedom motion in
three-dimensionalspace.

The methodologyfor the model developmentwill be presentedin
two parts. The � rst is the derivation of the mathematical equations
that govern the motion of the aerostat.The second part describes the
process of determining the aerodynamic parameters of the aerostat.

1. Equations of Motion

The dynamic simulation of the aerostat is obtained by setting up
and solving the equations of motion in three-dimensional space.
The motion of the aerostat is described as the relative position and
velocity of a body-� xed coordinate frame with respect to an inertial
coordinateframe.The body frame is attached to the aerostat’s center
of gravity, and the inertial frame is � xed to an arbitrary point on the
ground. A diagram illustrating the reference frames in relation to
the aerostat is shown in Fig. 2. The translationalmotion is governed
by Newton’s Second Law and can be written as

FB D maB (1)

Because the aerodynamicforceswill be calculatedas componentsin
the body frame, it becomes more convenient to solve for the motion
variablesalso expressed in this frame. For this case the acceleration
is found by differentiating the velocity with respect to the inertial
frame dVB =dt . This is related to @VB =@t , the rate of change of the
velocity as seen in the body frame, as follows:

FB

m D
dVB

dt D
@VB

@ t C ! £ VB (2)
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where VB D [u v w]T and ! D [p q r]T is the angular velocity
of the aerostat. The rotational motion of the aerostat must satisfy
Euler’s equation:

Mcm D I P! C ! £ I!; I D

2

4
Ix x ¡Ix y ¡Ixz

¡Iyx Iyy ¡Iyz

¡Izx ¡Izy Izz

3

5 (3)

where Mcm is the net external moment acting on the aerostat, taken
about the mass center. Because of the symmetry of the aerostat in
the x-z plane, the components Ixy and Iyz of the inertia tensor are
zero.

The forces and moments that in� uence the aerostat are caused by
one of the following sources: gravity, buoyancy, aerodynamics,and
tether tension. The translationaland rotational equations of motion
of the aerostat can now be written as

.mg ¡ Fb/ sin µ C FH x C FPx C FSx

C FU x C Ft x D m. Pu C qw ¡ rv/

¡.mg ¡ Fb/ sin Á cosµ C FH y C FPy C FSy C FU y C Ft y

D m. Pv C ru ¡ pw/

¡.mg ¡ Fb/ cos Á cos µ C FH z C FPz C FSz C FU z C Ft z

D m. Pw C pv ¡ qu/ (4)

¡zb Fb sin Á cos µ C MH x C MPx C MSx C MU x C Mt x

D Ix x Pp ¡ .Iyy ¡ Izz/qr ¡ Ix z.Pr C pq/

¡xb Fb cos Á cos µ ¡ zb Fb sin µ C MH y C MPy C MSy

C MU y C Mt y D Iyy Pq ¡ .Izz ¡ Iyy/pr ¡ Ixz.r 2
¡ p2/

¡xb Fb sin Á cosµ C MH z C MP z C MSz C MU z C Mt z

D Izz Pr ¡ .Ix x ¡ Iyy /pq ¡ Ix z. Pp ¡ qr/ (5)

where FH , FP , FS , FU , Ft and MH , MP , MS , MU , Mt are the aero-
dynamic force and moment contributions from the hull, port � n,
starboard � n, upper � n, and tether and Fb is the buoyancy force
applied in the positive z directionof the inertial frame. The position
of the aerostat’s center of buoyancy is given by xb and zb while
mg is the weight of the aerostat acting in the negative z direction
of the inertial frame. The left-hand side of the equations represents
the external forces and moments acting on the aerostat, whereas the
right-hand side represents the aerostat’s motion.

2. Component Breakdown Method

The aerodynamic forces and moments on the aerostat are calcu-
lated by breaking down the aerostat into components with known
aerodynamic characteristics.This approach is based on the method
developedby Nahon for modeling of underwatervehicles.11 The in-
dividual components are the hull, denoted with an H , and the three
aft � ns, denoted with an S, P , and U for the starboard, port, and
upper � ns, respectively. The method for calculating the effects of
each component is as follows: 1) calculate the motion at a reference
point on each component, 2) calculate the local angle of attack and
sideslip angle, 3) calculate the lift and drag forces and moments,
4) transform these forces to the body frame, and 5) sum up the
forces and moments.

To calculate the motion at a reference point on each component
requiressettingup a local frame on that component.The local frames
for the hull and the three � ns are located at their centers of pressure.
The method for calculatingthe location of the center of pressure for
the hull will be described in a later section.

3. Aerodynamic Forces of the Fins
For the � ns the location of the center of pressure is taken to be at

their 1
4 -chord line midway from the base to the tip. The velocity of

the origin of the local frame of each � n with respect to the ground
Vi can be found using the relationship:

Vi D VB C ! £ ri (6)

Once the velocity of the center of pressure of each component is
known, the correspondingairspeed can be obtained from

Ui D Vi ¡ W (7)

The local angle of attack ®i and sideslip angle ¯i are calculated for
each component using the relationships

®i D tan¡1.wi =ui /; ¯i D sin¡1.vi =Ui / (8)

where Ui D
p.u2

i C v2
i C w2

i /. For the vertical tail � n, de� nitions for
the sideslip angle ¯ and the angle of attack ® are reversed because
the � n is vertical rather than horizontal.

The � ns are approximatedas NACA 0018 airfoils, and the forces
on each � n are characterized as lift L and drag D. The lift and
drag forces for the � ns are dimensionalized using the following
equations:

L i D
1
2
½ A f U 2

i CL ; Di D
1
2
½ A f U 2

i CD (9)

where Ui is the local airspeed of each � n. The two-dimensional
lift coef� cient is assumed to depend linearly on the angle of attack
for the region 0 < ® < ®stall , where ®stall is the stall angle. The re-
gion of the lift curve past the stall angle, ® > ®stall , is taken to be
� at with the lift coef� cient retaining its maximum value. This is
considered reasonablein the case of low-aspect-ratioairfoils.12 The
three-dimensional lift coef� cient can be calculated for a particular
aspect ratio using13

CL D CL®®; CL® D Cl®fA=.A C [2.A C 4/=.A C 2/]/g
(10)

The drag force on the � n is caused by parasitic drag and induced
drag. The drag coef� cient CD is calculatedby includingboth effects
using the following equation:

CD D CD0 C C2
L
¯¼ Ae (11)

It is important that if the airfoil has exceeded its stall angle the CL

used in this equation is calculated using the actual attack angle ® to
re� ect the additional drag beyond the stall point.

Using theseequations,the lift and dragforcesare orientedaccord-
ing to the relative velocity of the � n. The lift force L i is directed
normal to the direction of motion, whereas the drag force Di acts
in the opposite direction of the velocity vector. For use with the
equations of motion outlined earlier, these forces must be resolved
into the aerostat’s body frame. This can be achieved by � rst per-
forming a simple rotation about the � n’s local y axis. For inclusion
with the rotational equations of motion, the resulting moment Mi

is calculated as the cross product of the � n force vector Fi with a
position vector from the center of mass of the aerostat to the centre
of pressure of each � n as follows:

Mi D ri £ Fi (12)

4. Aerodynamic Forces of the Hull

Using the methodof JonesandDeLaurier,5 the aerodynamicin� u-
ence of the hull was estimated by a lift and drag force and a pitching
moment. The lift force L H and the drag force DH are considered to
be applied at the nose of the aerostat. The pitching moment about
the nose Mnose accounts for the pitching tendencies of the aerostat.
These quantities are calculated using the following equations:

L H D q0[.k3 ¡ k1/´k I1 sin.2®/ cos.®=2/ C .Cdc/h J1 sin ® sin j®j]

DH D q0[.Cdc/0 SH cos2 ® ¡ .k3 ¡ k1/´k I1 sin.2®/ cos.®=2/]

Mnose D ¡q0[.k3 ¡ k1/´k I3 sin.2®/ cos.®=2/

C .Cdc/h J2 sin ® sin j®j] (13)
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a)

b)

Fig. 3 Schematic of aerodynamic parameters of hull; a) original pa-
rameters and b) parameters with Mnose replaced by forces applied at
center of pressure.

where UH D
p.u2

H C v2
H C w2

H / is the airspeed at the hull reference
point. Also,

I1 D
Z lh

0

dA

d»
d» D Ah and I3 D

Z lh

0

»
dA

d»
d»

J1 D
Z lh

0

2r d» and J2 D
Z lh

0

2r» d» (14)

The values for I1, I3, J1 , and J2 are based on the geometry of the
aerostat. To utilize these equations, it is required to split the aerostat
into two regions: the hull region, which extends from the nose to
the starting point of the � ns, and the � n region from this point
to the tail. At » D lh the hull cross-sectional area is Ah . Figure 3
shows a two-dimensional diagram of the aerostat and the various
aerodynamic parameters. The moment calculated about the nose
Mnose of the aerostatis not appropriatefor our simulationbecausethe
equationsof motion sum the moments at the center of gravity of the
aerostat.

To account for this, the force/moment system L H , DH , Mnose was
replaced by an equivalent system at the aerostat’s center of pres-
sure. The center of pressure is the point at which the force/moment
system has zero moment. It is located along the centerline of the
aerostat at a distance from the nose, which is determined at each
time step of the simulation. The distance from the nose to the cen-
ter of pressure. xn is calculated by equating Mnose to the moment
generated about the nose by the lift force L H using the following
equation:

¡Mnose D L H .¡xn/ (15)

Using the conventionof Jones and DeLaurier,5 the orientation of
the lift and drag forces on the hull follows a different convention
from that of the � ns. For the � ns the forces are directed accord-
ing the � n’s motion, whereas the hull forces are directed accord-
ing to its body axis independent of the direction of motion. The
lift force acts perpendicular to the aerostat’s central axis (x direc-
tion in the body frame) while the drag force acts in the negative
x direction.

The con� guration of the aerostat shown previously are for a two-
dimensional representation. Figure 4 shows the motion variables

yB

xB

zB

a
uH

vH

wH
DH

g

LH

UH

g

Fig. 4 Orientation of the hull motion and forces.

and hull forces for three-dimensional motion. The angle of attack
of the hull ® and the angle of the lift force in the y-z plane ° are
found using the motion variables as follows:

® D cos¡1.u H =UH / and ° D tan¡1.vH =wH / (16)

To represent the aerodynamic forces in the body frame, the lift and
drag forces are rotated by the angle ° . For the rotational equations
of motion, the resultant moment MH about the center of mass can
be found using the equation

MH D rH £ FH (17)

Added mass is included in the analysis for the hull by de� ning
the effective mass of the aerostat me as the sum of the true mass m
and the added mass ma as follows:

me D m C ma (18)

where ma D ki ½V and ki is the added mass coef� cient14 in the ap-
propriate direction.

B. Tether Model
The tether is used to constrain the motion of the aerostat, and

this must be accounted for in the dynamics model by combining the
aerostat and tether models. This work uses a lumped-mass model
of the tether in order to model its dynamic behavior. In this type of
model, which is discussed in more detail by Driscoll and Nahon,15

the continuous cable is � rst discretized into elements. The mass of
each element is lumped at its endpoints (called nodes). The internal
stiffness and damping characteristics of the cable are modeled as
lumped parameter stiffness and damping elementsconnectingthose
nodes. This type of model, shown in Fig. 5, has been validated for a
varietyof underwatersystemswith excellentagreementwith in-� eld
measurements.15

The position of each node is described with respect to an iner-
tial reference frame by a three-componentvector pi D [xi yi zi ]T .
Each cable element is considered to be a straight elastic element,
subject to forces at its endpoints. This method of modeling allows
each cable element to possess distinct properties, such as density
and stiffness. The orientation of each cable element is represented
using a Z-Y -X (Ã , µ , Á) Euler angle set. Because the torsion of
the cable is not included in the model, the Ã rotation about the
inertial Z axis is constrained to zero. The Euler angles µi and Ái

can be calculated from the coordinates of the appropriate nodal
endpoints.15

1. Internal Forces
The internal forces acting within an element are caused by its vis-

coelastic properties. These are represented schematically in Fig. 5.
The tension in the cable caused by its structural stiffness is con-
sidered to act only in the tangential direction and is modeled by a
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ki

ki+1

node i-1

node i

node i+1

element i

element i+1

b

b
Fig. 5 Schematic of viscoelas-
tic internal forces for the tether
model.

ZB

YB

XB

x t

- z t

Ft

F b mgx b

z b
x

Fig. 6 Connection point of tether and aerostat.

linear tension-strainrelationship.The friction between the braids of
the cable tends to create a damping effect. This effect is assumed to
be linear with the strain rate. The total tension in a cable element as
a result of these effects is therefore written as

Ti D At E" C bP"; " D
¡li ¡ lu

i
¢¯lu

i (19)

2. External Forces

The external forces acting on the cable element are those caused
by aerodynamicdrag and gravity. The drag force acting on the cable
element can be calculated according to Morison’s equation

Dt D
1
2
½Cd dt lu

i kui k
2 (20)

The velocityui accountsnot onlyfor themotionof the cableelement,
but also the motion of the surrounding air, that is, ui D Ppi ¡ W. The
drag coef� cient is modi� ed by loading functions,15 which account
for the nonlinearbreakupof drag between the normal and tangential
directions. Once the drag for elements i and i C 1 are calculated,
half of each value is applied to the i th node, which joins the two
elements. Finally, the gravitational force acting on a cable element
is applied, based on the element’s density and volume.

3. Tether Attachment Point

The coupling of the tether model and the aerostat model was
achieved by connecting the uppermost node of the tether to the
base of the aerostat’s � ying lines, as shown in Fig. 6. The aerostat
and its � ying lines (everything within the dashed box) are treated
as a single rigid body. Hence, the two � ying lines shown can be
interpreted as rigid members. In reality, for an aerostat of this type
many � ying lines would be present and arranged in a harness (see
Fig. 2) in order to rigidly secure the aerostat. It would be dif� cult
to incorporate the effects of the � exibility of a complex harness,
and therefore the rigid-body approximation is deemed adequate for
this level of investigation.The force from the top node of the tether
Ft is included in the equations of motion of the aerostat. For the
rotational equations of motion, the moment from the tether force is

calculated using

Mt D rt £ Ft where rt D

2

4
xt

0
zt

3

5 (21)

The actual location of the attachment point relative to the aerostat
can have a signi� cant effect on the behavior of the aerostat. Aeros
Flightcam offered some general insights as to where to place the
tether attachment point, based on their experience with tethered
aerostats. It was recommended that, in the interests of stability, the
aerostat should have a pitched-up attitude of about 5 to 10 deg and
that the vertical distance of the attachment point from the aerostat
centerline zt should be about 1 1

2 times the aerostat diameter.
The distance xt was calculated to yield the selected pitch angle

by summing the moments about the aerostat’s center of mass in a
zero wind equilibrium position, as follows:

¡Fbxb cosµ0 C Fbzb sinµ0 C Ft xt cos µ0 ¡ Ft zt sinµ0 D 0 (22)

which can be rearranged as

tan µ0 D
Fbxb ¡ Ft xt

Fbzb ¡ Ft zt
(23)

In the absence of wind, the buoyancy force Fb and the tether force
Ft both act along the z direction of the Earth-� xed inertial frame.
These two forces along with the position of the center of buoyancy
xb and zb are all � xed quantities for the aerostat. Therefore, once
values for two of the other three remaining variables µ0, xt , and zt

are selected this equation can be used to solve for the remaining
variable. For our purposes we selected a certain pitch angle µ0 and
vertical tether attachment position zt and solved for the unknown
horizontal tether attachment position xt .

C. Physical Parameters
To solve the equations of motion outlined earlier, it is necessary

to de� ne numerous physical parameters for this particular aerostat.
The relevant geometric properties of the Aeros aerostat are given in
Table 1. There is an internal air envelope used to regulate helium
pressure known as the “ballonet”. This is achieved by venting and
accumulating air using electric blowers. The blowers are located at
the base of the belly where the ballonet meets the hull. The tail � ns
are made from the same material as the hull and are in� ated with
helium. Multiple strands of nylon cord connect the face of each � n
to the face of the adjacent � n. The nylon cord is cinched tight, and
the tension in the cords keeps the � ns in place. The � ns are arranged
in an inverted Y con� guration. The two dihedral � ns are offset by
an angle of 112.5 deg from the vertical � n.

To obtain the physical parameters of the aerostat, a three-
dimensional CAD model was generated using PRO-E. The CAD
model was constructed to represent accurately the actual aerostat,
completewith a thin-walledshell of the hull and ballonet envelopes,
solid models of the gases contained within, and a plate that houses
the blowers. The appropriate density was assigned to each part,
and the various physicalparameters were computed by PRO-E. The
mass and volume of the relevant parts are given in Table 1. Other
parameters of interest obtained in this manner are the location of
the aerostat’s center of buoyancy, the center of mass, and the inertia
tensor. The center of buoyancywas found by obtaining the center of
mass for a solid, homogenous aerostat with the proper dimensions.
From Table 1 it is noted that the mass of the gases are a signi� cant
contribution to the overall mass of the aerostat. When modeling
lighter-than-air vehicles, it is essential to account for the mass of
these internal gases when determining any physical parameters.

1. Aerodynamic Parameters

The aerodynamic parameters used in the dynamics model must
be estimatedfor this particularaerostat.The locationof the centerof
pressure for each component was calculated using the explanation
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Table 1 Physical parameters of Aeros aerostat

Parameter Value

Aerostat length, L 18.3 m
Helium volume 467.1 m3

Ballonet volume 52.2 m3

Total volume 519.3 m3

Helium mass 78.9 kg
Air mass 64.2 kg
Hull mass 115.6 kg
Ballonet mass 25.6 kg
Blowers mass 10.0 kg
Tail � n mass (all 3) 63.6 kg
Total mass 357.9 kg
Density of air 1.229 kg/m3

Density of helium 0.169 kg/m3

Buoyancy 6,260.7 N
Net lift 2,749.7 N
Aerostat diameter, D 7.7 m
Center of mass (from nose)

xcm ¡8.476 m
ycm 0
zcm ¡0.491

Center of buoyancy
(from c.m.)
xb 0.710 m
yb 0
zb 0.524 m

Inertia tensor components
Ix x 3,184 kg ¢ m2

Iyy 10,011 kg ¢ m2

Izz 9,808 kg ¢ m2

Ix z D Izx ¡641 kg ¢ m2

givenearlierand is listedin Table2. All distancesgivenare measured
from the aerostat’s center of mass.

As noted earlier, the aerostat was split into two regions: the hull
region, which includes everything from the nose to the start of the
� ns, and the � n region, which includes the � ns and the section of
the hull behind the start of the � ns. The area for each � n A f is the
cross-sectionalarea from the centerline of the aerostat to the tip of
the � n. The aspect ratio of the � ns is de� ned as the square of the
distance from the aerostat’s centerline to the � n tip divided by A f .
The value of CL® takes into account losses arising from the � ns’
location at the rear of the vehicle. The � ow� eld in the vicinity of the
� ns will have experienced disruptions from passing over the hull,
resulting in a reduction of the � ns’ capability to produce lift.

The added mass coef� cients k1 and k3 were estimated using data
for ellipsoids.13 The hull ef� ciencyfactor´k was found by averaging
valuesgiven for three differentaerostatsfrom Jones and DeLaurier.5

The cross� ow drag coef� cient for the hull .Cdc/h was estimated
using the drag coef� cient for a cylinder. The estimation of the zero-
angle axial drag .Cdh/0 was based on the drag coef� cient for a
streamlined shape with a � neness ratio of 2.4 (Ref. 15), where the
� neness ratio is the length of the body divided by its maximum di-
ameter. The hull referencearea SH is de� ned as the (hull volume).2=3

The evaluation of the integral for I1 gives the cross-sectional area
of the hull at the hull � n region boundary Ah . The integral for J1

is equivalent to the cross-sectional area of the hull region of the
aerostat in the xz plane, which was found using the evaluation tools
of PRO-E on the CAD model. To obtain the integrals for I3 and J2,
the hull pro� le was approximated by a 10th-order polynomial, and
the integrals given in Eq. (14) were then evaluated numerically.

2. Tether Properties

The tether that was modeled has physical parameters listed in
Table 3. The Plasma tether is manufactured by Puget Sound Rope.
The manufacturer provided the data for the density and strength of
the cable. The damping ratio and elastic modulus were estimated
from experimental tests performed on a sample of Plasma tether.
The damping coef� cient b used in the tether model is calculated
using the following equation:

b D ³bc (24)

Table 2 Aerodynamic parameters of Aeros aerostat

Parameter Value

Center of pressure
Hull

xh 8.476¡ xn
yh 0
zh 0.491 m

Vertical � n
xv ¡4.92 m
yv 0
zv 3.74 m

Port � n
xp ¡4.92 m
yp 2.98 m
zp ¡0.706

Starboard � n
xs ¡4.92 m
ys ¡2.98 m
zs ¡0.706

Fins
A f 30.0 m2

A 2.18
CL® 2.0
CD0 0.012
®stall 11.0 deg

Hull
k1 0.16
k3 0.76
´k 1.2714
.Cdc/h 0.28
.Cdh /0 0.0394
SH 59.35 m2

I1 20.43 m2

I3 ¡170.51 m3

J1 75.84 m2

J2 433.85 m3

Table 3 Tether parameters

Parameter Value

Diameter, dt 6 mm
Density, ½t 840 kg/m3

Elastic modulus, E 37.4 GPa
Damping ratio, ³ 0.017

III. Linear Stability Analysis
The nonlinear dynamics model of the streamlined aerostat on a

single tether is useful for obtaining time histories of the aerostat’s
motion in response to a particular wind input. However, in order to
acquire a quantitative assessment of the stability of the aerostat a
linear approximationof the system was derived, and its eigenvalues
and eigenvectors were studied.

The nonlinear dynamics simulation can be thought of as a set of
functional relationships where the derivative of each state variable
is dependent on the full set of state variables. This is demonstrated
by the following equation:

PX D F.X/ (25)

where X D [ Px1; x1; Py1; y1; Pz1; z1; : : : ; Pxn ; xn ; Pyn ; yn; Pzn; zn ; PÁ; Á;

Pµ; µ; PÃ; Ã ]T is the state vector.It containsthe positionand velocity
of all elements of the model, with respect to the inertial frame. This
includes each of the tether nodes as well as the aerostat. For the
aerostat node there are an additional six state variables representing
its angularposition and velocity.Therefore,the total number of state
variablesis 6n C 6, where n is the number of tether nodes.There are
no state variables for the bottom-most tether node because it is � xed
to the ground; hence, the translational variables with the subscript
n represent the aerostat node.

A. Linear Model
Linearizing Eq. (25) leads to

PX D AX (26)
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Fig. 7 Comparison of linear and nonlinear simulation results of aerostat motion for case with single tether of Lt = 300 m and wind speed
W = 10 m/s.

where the state matrix A is de� ned as

A D
@F
@X D

2

6666666664

@ f1

@ Px1

@ f1

@x1
¢ ¢ ¢

@ f1

@Ã

@ f2

@ Px1

@ f2

@x1
¢ ¢ ¢

@ f2

@Ã
:::

:::
: : :

:::

@ f6n C 6

@ Px1

@ f6n C 6

@x1
¢ ¢ ¢

@ f6n C 6

@Ã

3

7777777775

(27)

where F D [ f1 f2 : : : f6n C 6]T . The most direct method for ob-
taining the state matrix is to perform a numerical differentiation
by � nite difference of the nonlinear differential equations. The � rst
step is to choose a reference equilibrium condition about which
the system will be linearized. Next, each state variable is perturbed
slightly from its equilibrium value. The ensuing response of every
state variable is observed and compared to its equilibrium value.
The difference between the response and the equilibrium value is
divided by the perturbationto approximateeach element of the state
matrix. For example, in the case of the � rst element in the � rst row,
we have

@ f1

@ Px1
¼

f 0
1 ¡ f10

1 Px1
(28)

where f 0
1 is the value of f1 following a perturbation of a particular

state variable (in this case, Px1/, whereas f10 is the value of f1 at the
reference equilibrium condition and 1 Px1 is the perturbation value
of Px1. The value for the perturbation is typically very small (10¡5

was used). The reference equilibrium condition is one in which
the tethered aerostat system is in a steady-state wind � eld in the
absence of turbulence. The process can be repeated for a variety of
wind speeds in the range of interest.

Once A is formed, it is necessary to verify its validity through
a comparison of the linear and nonlinear responses to a speci� ed
initial condition.MATLAB® was used to obtain the linear response.
The nonlinear response was obtained using the nonlinear dynamics
model described in the preceding section. All six position variables
for the aerostat were simultaneously given an initial perturbation

from the equilibrium condition. The perturbation was 0.1 m for
the translational variables and 0.01 rad for the rotational variables.
The linear and nonlinear responses for the position variables are
shown in Fig. 7. The good agreement between the two responses
demonstrates the success of the linearization process and provides
justi� cation for pursuing the linear stability analysis.

1. Decoupling
The stability of vehicle models is typically analyzed by decou-

pling the motion variables into lateral and longitudinal subsets.
The longitudinal variables are de� ned as translational motion in
the x and z directions and rotational motion about the y axis (i.e.,
Px1:::n ; x1:::n ; Pz1:::n ; z1:::n ; Pµ; µ/. The lateral variables are de� ned as
translational motion in the y direction and the rotational motion
about the x and z axes (i.e., Py1:::n; y1:::n; PÁ; Á; PÃ; Ã/. For a teth-
ered aerostat symmetrical about the x-z plane, it can be shown that
longitudinal and lateral decoupling will occur. To ensure that this
holds true for our tethered aerostat system, the state vector and the
state matrix were rearranged to separate the longitudinaland lateral
systems. The new state vector X0 is as follows:

X0 D
µXlong

Xlat

¶
; Xlong D

2

6666666666664

Px1

x1

Pz1

z1

:::

zn

Pµ
µ

3

7777777777775

; Xlat D

2

66666666666664

Py1

y1

:::

yn

PÁ
Á

PÃ
Ã

3

77777777777775

(29)

To be consistent with the new arrangement of X0, the state matrix
A must be rearranged by exchanging the appropriate row and col-
umn for each variable that was repositioned. Once this process is
complete, we can determine whether the longitudinal and lateral
variables are, in fact, decoupled. If the longitudinal and lateral sys-
tems are decoupled, the new state matrix A0 will be partitioned into
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four distinct submatrices: a longitudinal submatrix Along , and a lat-
eral submatrix Alat , as well as two null submatrices.The dimensions
and location of each submatrix are as follows:

A0 D
µ[Along].4n C 2/ £ .4n C 2/ [0].4n C 2/ £ .2n C 4/

[0].2n C 4/ £ .4n C 2/ [Alat].2n C 4/ £ .2n C 4/

¶
(30)

For our system it was found that the lower left matrix was in fact
comprised of all zeros; however, the upper-right submatrix matrix
had several elements with small magnitudes. Because these values
were quite small (the largest being on the order of 10¡4/ compared
to the magnitude of the elements of the other matrices (the largest
being on the order of 104/, it can be concluded that the motion is
essentiallydecoupled.Therefore, the system can be analyzedas two
separate systems as follows:

PXlong D AlongXlong; Xlat D AlatXlat (31)

2. Eigenvalues and Eigenvectors

The aerostat’s natural motion and stability are characterized by
the eigenvalues and eigenvectors of the corresponding state ma-
trix. Each eigenvalue(or pair of eigenvalues) representsa particular
mode of the motion, while its corresponding eigenvector provides
the relationshipof each state variable in that mode. Eigenvalues can
exist either as complex conjugates denoted as ¸1;2 D ¾ § !d i or as
distinct real numbers. A complex conjugate pair of eigenvalues in-
dicates that the mode is oscillatory, and a real eigenvalue indicates
nonoscillatory motion. For stability of the system, all of the real
parts of the eigenvalues must be negative. The damped frequency
!d is the imaginarypart of the eigenvalue,and the natural frequency
and damping ratio are found from

!n D
p¾ 2 C !2

d ; ³ D sinµ D ¡¾=!n (32)

Each eigenvalue of a complex conjugate pair has a conjugate that
is a re� ection about the real axis. Both eigenvalues correspond to a
single mode with a particular frequency and damping ratio.

Each element of the corresponding eigenvector represents the
magnitude and phase of the response of a particular state variable.
If phasor representationis used to display the elements of the eigen-
vectors, the radius corresponds to the magnitude of the response,
and the angle corresponds to the phase. The magnitude and phase
of the state variables obtained from the eigenvectors are relative
to each other and are not absolute. In the case of complex conju-
gateeigenvalues,the correspondingeigenvectorsconsistof complex
conjugates mirrored about the real axis.

B. Results
The cable was discretizedinto 10 elements, yielding longitudinal

and lateral subsystemsof order 42 and 24, respectively.MATLAB®

was used to compute the eigenvaluesand eigenvectors for Along and
Alat . Because the numberof modes was large(a totalof 33),we chose
to only study the four lowest frequency modes in each subsystem
because the high-frequencymodes are not likely to yield signi� cant
motion in the actual system.

The results for a baseline case are presented in Fig. 8. The condi-
tions for this case are tether length L t D 300 m with a steady-state
pitch angleµ0 D ¡4 deg (pitchednose up).All otherphysicalparam-
eters correspond to the values presented for the Aeros Aerostat in
Sec II. The wind model used had a wind speed constant with height.
The four longitudinal and four lateral modes considered here were
found to be stable over the full range of wind speeds. The remaining
modes omitted from the presentation were observed to be stable as
well.

To gain a better appreciation of the results, the eigenvectors for
each of the modes were studied in attempt to classify the motion.
Details of the classi� cation of each lateral mode are as follows:

1) In the pendulum mode the eigenvectors for the position and
velocity of the tether nodes in the y direction, y1:::n and Py1:::n , are
90 deg out of phase, and the amplitudesof both motion variables in-
crease linearly from the base to the top of the tether. The magnitude

of the yaw rotation Ã of the aerostat is appreciable,which suggests
that yawing motion is coupled with the pendulum oscillation. This
mode has by far the lowest frequency, which is expected for the
pendulum mode, considering the size of the system. The dramatic
increase in period with wind speed at W D 2 m/s is likely caused by
the coupling of the pendulum motion and the yawing of the aero-
stat. The effects of this phenomenon appear to become saturated
at W D 4 m/s. As the wind speed increases beyond 6 m/s, the pe-
riod decreases gradually, suggesting that the wind eventually over-
comes this coupling. At these higher speeds the lateral pendulum
mode behaves more like the longitudinal pendulum mode, which
decreaseswith wind speed. For wind speeds below 2 m/s, the eigen-
vector element representing the yaw of the aerostat is about 270 deg
out of phase with the aerostat’s lateral position element. For wind
speeds beyond 4 m/s, the phase angle is between 55 and 90 deg.
The shift in phase is observed to increase dramatically the period
of the pendulum mode. This illustrates the importance of including
the cross coupling between the tether and aerostat in the dynamic
analysis.

2) In the rolling mode the dominant motion is the rolling of the
aerostatas large relativeamplitudesof the roll angleÁ and rotational
velocity PÁ are observed.

3) With the � rst tether harmonic the eigenvectorsfor the position
and velocity of the tether nodes are 90 deg out of phase. The magni-
tude of the position of the tether nodes is a maximum at the middle
node, which corresponds to a simple concave/convex shape.

4) With the secondtetherharmonicthe positionand velocityof the
tether nodes are 90 deg out of phase.The motion for the nodes under
node 5 and above node 5 are 180 deg out of phase. The magnitude
of the position of the tether is a maximum at nodes 2 and 7 and is
a minimum at node 5, which corresponds to an S-shaped tether. As
expected, the frequency of this mode is twice as high as the � rst
tether harmonic.

Classi� cation of the longitudinaleigenvectors followed a similar
process. The characteristics and classi� cation of the four lowest
frequency longitudinalmodes are as follows:

1) For the pendulum mode the dominant motion variables are
the position and velocity of the tether nodes in the x direction,
x1:::n and Px1:::n . The motion in the z direction is negligible. The
eigenvectorscorrespondingto x1:::n and Px1:::n are 90 deg out of phase.
The amplitudes of x1:::n and Px1:::n increase linearly from the base to
the top of the tether.

2) For the pitching mode the dominant motion is the pitching of
the aerostat as large relative amplitudes of the pitch angle µ and
rotational velocity Pµ are observed.

3) For the axial springmode the dominantmotion variablesare the
position and velocity in z direction, z1:::n and Pz1:::n . The magnitudes
of the motion variables in the x direction are negligible.

4) For the � rst tether harmonic mode, like the pendulum mode,
the dominant motion variables are the position and velocity of the
tether nodes in the x direction,whereas the motion in the z direction
is negligible. The magnitude of the x position of the tether nodes
is a maximum at the middle node, which corresponds to a simple
concave/convex shape.

1. Reference Frequencies

The basic motion characteristics from the linear analysis can be
compared with the analytical solutions for an idealized tethered
aerostat, as a means of checkingthe validity of the dynamics model.
The analytical reference frequencies for the motion of a buoyant
mass on a string are obtained as follows:

For the pendulum mode:

!n D
r Fb ¡ mg

me L t
(33)

For the axial spring mode:

!n D
pE At =me L t (34)
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Fig. 8 Longitudinal and lateral modes for baseline case with Lt = 300 m and µ0 = ¡¡4 deg.

for the tether’s transverse mode for the nth harmonic16:

!n D
n¼

L t

r Fb ¡ mg
½t At

n D 1; 2; : : : (35)

For the pendulum modes the relevant effective mass for the longi-
tudinal case is in the x direction, and for the lateral case it is in the
y direction. For the axial spring mode the effectivemass in the z di-
rection is used. For the transversemodes added mass is not included
in determining the net lift of the aerostat given as Fb ¡ mg because
the added mass only applies to the inertialpropertiesof the aerostat.

The theoretical natural frequencies are used to � nd the theoretical
periods of each mode using ¿n D 2¼=!n . The results are presented
in Table 4 and compared to the periods given in Fig. 8 from the
linear analysis at W D 1 m/s.

For the fundamental transverse tether mode the observed fre-
quencies from the linear model were identical for both the lon-
gitudinal and lateral cases. Close agreement is observed for all
modes with the exception of the lateral pendulum, which has a
difference of 7.2% with the theoretical value. This discrepancy
could be attributed to the fact that the comparison uses the results
from the linear model at W D 1 m/s, whereas the theoretical period
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Fig. 9 Longitudinal and lateral modes for case with Lt = 33.3 m and µ0 = ¡¡4 deg.

corresponds to a system with W D 0. Overall, the good agreement
between the linear model and the theoretical oscillations provides
a � rst level of assurance of the general validity of the dynamics
model.

2. Changing the Tether Length
To assess the system’s sensitivity to changes in tether length, the

stability of the system with different tether lengthswas investigated.
In the target applicationof supportinga telescopereceiver, the tether
will likely be shorter than the 300 m used in the baseline case.

Therefore, the behaviorof the aerostat with shorter tether lengths of
L t D 100 and 33.3 m was studied. The results for L t D 33.3 m are
given in Fig. 9. Signi� cant differenceswere found in the behaviorof
the system as the tether length was decreased. For the longitudinal
modes the pendulum, axial spring, and fundamental tether modes
all experience a reduction in damping as tether length shortens.
Laterally, there is also a reduction in the damping of the transverse
tether modes. There is little change observed in the two aerostat
rotational modes, which is expected because the motion of these
modespertainprimarilyto the aerostatandare thereforeindependent
of the tether length.
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Table 4 Comparison of theoretical and linear model results for
period ¿n of certain oscillatory modes for baseline case

First Second
Longitudinal Lateral Axial tether tether

Model type pendulum pendulum spring harmonic harmonic

Theoretical 43.9 s 58.0 s 2.96 s 1.81 s 0.90 s
Linear model 44.4 s 62.2 s 2.96 s 1.78 s 0.90 s
% Difference 1.1 7.2 ¼0 1.7 ¼0

It appears that the reduction in dampingratio for the tether modes
(i.e., axial spring, tether harmonics) is the result of losing the ma-
jority of the damping in� uence from the wind. For the case with
L t D 300 m, the damping of each tether mode increasesappreciably
as wind speed increases,but for the case with L t D 33.3 m the damp-
ing ratio experiencesa much smaller increase as W increases. With
a shorter tether there is less material present to be affected by the
wind’s in� uence. Based on these results, it would appear that the
system in general is more stable with longer tether lengths.

There is also a distinct difference between the characteristics of
the lateral pendulum mode for the two cases with different tether
length. The shift to a lower-frequencyoscillation occurs at a higher
wind speed for the shorter tether. Also, the damping for the short
tether case experiences a more gradual change and declines to a
much higher steady-state value at high wind speeds. This suggests
that the lateral pendulum motion for tethered the aerostat is more
stable with the shorter tether at high wind speeds. For low wind
speeds (W < 4 m/s) the stability of this mode is better with the
longer tether length of L t D 300 m.

IV. Conclusions
A nonlinearmodel of a tethered aerostat was developed,based on

a lumped-massapproachfor the tether, and a componentbreakdown
approach for the aerostat. This model was then linearized to allow
an examination of the stability of the tethered aerostat in various
winds. The behavior observed at low wind speeds correlated well
with analytical predictions. It was found that the system remained
stable at all wind speeds and that the stability improved with in-
creasing wind speed for all modes of motion with the exception of
the lateralpendulummode. The stabilityof this mode increaseswith
an increase in wind speed until a certain critical point after which
the stability decreaseseventuallyreachinga steady state. It was also
found that all modes of the system, again with the exception of the
lateral pendulum mode, became more stable with the longer tether.
The lateralpendulummode has better stability with the longertether
at low wind speeds; however, at high wind speeds it appears more
stable with the shorter tether.
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