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Stability Analysis of a Tethered Aerostat

Casey Lambert* and Meyer Nahon'
McGill University, Montreal, Quebec H3A 2K6, Canada

This paper presents a dynamics analysis of a streamlined aerostat tethered to the ground by a single tether. A
nonlinear dynamics model of this system is first assembled. The tether is modeled using a lumped mass approach,
and the viscoelastic properties of the tether are included. The aerostat is modeled using a component breakdown
approach. The dynamics equations of the cable and aerostat are then assembled into a single system of nonlinear
differential equations. A linearization of this system is then performed using a finite difference approach. The
resulting linear equations of motions are decoupled into longitudinal and lateral subsets. The stability properties
of each subset is then studied as a function of wind speed. The effect of varying tether length is also investigated.

Nomenclature
A = hull cross-sectional area or fin aspect ratio
A, A, Along = state matrices for complete system, lateral
and longitudinal subsystems
Ay = fin planform area
Ap = cross-sectionalarea of hull at§ _ 1/,
A, = tether cross-sectional area
as = aerostat mass-center acceleration
b, b, = tether damping coefficient and critical

damping coefficient
hull zero-angle axial and crossflow
drag coefficients

(th)o, (Cdc)h

Cp, Cpo = fin drag coefficient, fin parasitic
drag coefficient

Cy = normal drag coefficient of cable element

CL = fin lift coefficient

Cias CLa slope of the two-dimensional lift curve,
slope of the three-dimensionallift curve

D, Dy, D, = drag force, hull drag force, tether drag force

d, = tether diameter

E = Young’s modulus of the cable

e = Oswald’s efficiency factor

Fp = netforce applied to aerostat

F, = buoyancy force

F; = force from the body component i
(i _H, P, S, U representing the hull, port
fin, starboard fin, and upper fin, respectively)

F, = force from the tether

g = gravitational acceleration

1 = inertia tensor for aerostat

L, L,J.,J; = hull-related geometric quantities

ki, k3 = axial and lateral added-mass coefficients
for hull

L,Ly,L, = lift force, hull lift force, tether length

Iy = distance from aerostat nose to starting
point of tailfins

i, 1! = stretched and unstretched length cable
element i

M; = moment caused by the body component i
i_H,P,S,U)
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Mose = moment about the nose acting on hull

M, = moment from the tether

m, Mg, M, = true mass, added mass, and effective
mass of aerostat

Pi—[xiyi 1T = position of cable node i

90 = steady-state dynamic pressure (_pU} /2)

r = hull radius

ri = position vector from mass center to body
component (i — H, P, S, U)

r: = position vector from mass center to tether
attachment point

Sy = hull reference area, (— (hull Volume)z/ D)

T; = tensionin cable element i

U; _[u; v w[]T = velocity of body componenti (i — H, P,
S, U) with respect to surrounding air

u; = velocity of geometric center of cable
element i with respect to surrounding air

% = hull volume

Ve _[uv w]” velocity of the aerostat mass center with

respect to ground

Vi = velocity of body componenti(i _ H, P,
S, U) with respect to ground

w = wind velocity

X, Xiat, Xiong = state vector for complete system, lateral
and longitudinal subsystems

Xp = axial distance from nose to the hull
center of pressure

o, B = angle of attack and sideslip angle

14 = angle of hull lift force in the y-z plane

3 = cable strain

¢ = damping ratio

Nk = hull efficiency factor

o = zero wind pitch angle of aerostat

§ = axial distance along hull from the nose

P, Pr = density of air; density of tether

Ty = period of oscillatory modes

Vv, 0,6 = yaw, pitch, and roll angles

o _[pqr]’ = angular velocity of aerostat

Wy, Wy = natural frequency and damped natural

frequency of oscillatory modes

I

ETHERED aerostats are known to be useful in applications
where a payload must be deployed at altitude for long dura-
tions. In these applications the energy consumed (and the resulting
refueling requirement) by a powered heavier-than-air craft renders
that platform less competitive in relation to an aerostat that con-
sumes no energy. However, tethered aerostats can be difficult to
deploy and operate because of their large size, sensitivity to envi-
ronmental conditions, and particular dynamics characteristics.
A group of radio astronomers at the National Research Council
in Canadais interestedin using a tethered aerostat system to support
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the receiverof a large-scaleradio telescope.' As part of the proof-of-
concept experiment for this system, they are presently deploying a
tethered aerostatin Penticton, British Columbia, to study its perfor-
mance in this application. A parallel analytical/computational study
is being conducted to study this system’s dynamic characteristics.

Previous dynamicsinvestigationsof tethered aerostats can be sep-
arated into nonlinearand linear studies. DeLaurier” was first to study
the nonlinear dynamics of an aerostat attached to a comprehensive
cable model. This initial work considered only two-dimensional
motion and steady-state wind conditions; however, turbulence was
addressed later by DeLaurier.” The stability of the system was an-
alyzed by showing that the motion decoupled into separate lateral
and longitudinal motions. Lateral instabilities at low wind speeds
were predicted (though later conversations with the author indicate
these may have been caused by spurious results). Progress with the
dynamics modeling of a tethered aerostat was made by Jones and
Krausman® when a three-dimensional nonlinear dynamics model
with a lumped mass discretized tether was established. Jones and
DeLaurier’ built on this basic model by introducing a segmented
panel method for modeling the aerostat. This entailed dividing the
aerostat into vertical slices to account for the effects of turbulence
variations along the length of the hull. Another three-dimensional
nonlinear dynamics model of a tethered aerostat was developed by
Humphreys® This model used a single partial differential equation
to relate the motion and forces along the tether. Experimental vali-
dation of this dynamics model was achieved by performingtow tank
tests with a scaled model.

In 1973, a linear model of a tethered aerostat was proposed by
Redd et al.” Experimental data were used to validate theirmodelin a
steady wind. A study of the stability of the aerostat was performed,
but the formulation of the linear model neglected the dynamic cross
coupling of the tether and the aerostat. The nonlinear model de-
veloped by Jones and DeLaurier’ was used by Badesha and Jones®
to perform a linear stability analysis of a large commercial aero-
stat by linearizing the equations of motion of the nonlinear model.
This analysis included only pendulum modes and neglected other
modes of motion. The dynamics model developed by Badesha and
Jones showed good agreement with experimental data as presented
by Jones and Shroeder.” In 1998, Etkin'® used a linear analysis to
study the stability of a towed body. The stability of several different
modes was studied as function of wind speed. Although the gen-
eralized formulation of this approach makes it relevant to a range
of bodies constrained by a cable including that of a buoyant teth-
ered aerostat in a flowfield, a detailed study of the dynamics of a
specific tethered aerostat is necessary to establish confidence in the
prediction of the behavior of the system.

The present work focuses on an investigation of the dynamics
of a streamlined aerostat on a single tether using nonlinear model-
ing techniques and a linear stability analysis. The linearization of
the system was performed using a finite difference approach rather
than a conventional analytical method. The stability analysis in-
cludes several longitudinaland lateral modes and also considers the
cross coupling between the tether and aerostat. Section II discusses
the developmentof the nonlinear dynamics model of the cable and
aerostat. In Section III, the nonlinear model is linearized numeri-
cally, and the effects on stability of changing the tether length are
investigated.

II. Dynamics Model

A two-dimensional schematic of the system model, which con-
sists of the tether and the aerostat, is shown in Fig. 1. The aerostat
is modeled as a single body at the upper node of the tether, subject
to buoyancy, aerodynamic drag, and gravity.

A. Dynamics of a Streamlined Aerostat

A model of the dynamics of a streamlined aerostat was developed
to study its behaviorin various wind conditions. The aerostat model
is based on a streamlined aerostatmanufacturedby Aeros Flightcam
of Canoga Park, California, as shown in Fig. 2. The central goal of
this investigationis to study the stability of the aerostat on a single
tether.

Wind aerostat

element n node n+1

node n

element 2

node 2
element 1

node 1

Fig. 1 Discrete implementation of tethered aerostat dynamics model.
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Fig. 2 Aeros Flightcam aerostat.

The parameters of interest of this study are the motion of the
aerostatand the forces generatedduring its motion. The output of the
simulation is the translational and rotational position and velocity
of the aerostat as well as the tether tension while the input is a set
of initial conditions and a wind field. The aerostatis considered to
be rigid and is capable of full six degrees of freedom motion in
three-dimensionalspace.

The methodology for the model development will be presentedin
two parts. The first is the derivation of the mathematical equations
that govern the motion of the aerostat. The second part describes the
process of determining the aerodynamic parameters of the aerostat.

1. Equations of Motion

The dynamic simulation of the aerostat is obtained by setting up
and solving the equations of motion in three-dimensional space.
The motion of the aerostat is described as the relative position and
velocity of a body-fixed coordinate frame with respectto an inertial
coordinateframe. The body frame is attached to the aerostat’s center
of gravity, and the inertial frame is fixed to an arbitrary point on the
ground. A diagram illustrating the reference frames in relation to
the aerostatis shown in Fig. 2. The translationalmotion is governed
by Newton’s Second Law and can be written as

Fp — map (1)

Because the aerodynamicforces will be calculatedas componentsin
the body frame, it becomes more convenientto solve for the motion
variablesalso expressedin this frame. For this case the acceleration
is found by differentiating the velocity with respect to the inertial
frame dVp/dt. This is related to dVp/9r, the rate of change of the
velocity as seen in the body frame, as follows:

Fs dvs 3V
m — dt T 0t

LW Vi @)
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where Vg _[u v w]” and w_|[pgq r17 is the angular velocity
of the aerostat. The rotational motion of the aerostat must satisfy
Euler’s equation:

IXX _Ixy —IXZ
M —Iw @ I, I_ | L Ly _I: (3)
_1:/\' _Izy 1::

where Mcn is the net external moment acting on the aerostat, taken
about the mass center. Because of the symmetry of the aerostat in
the x-z plane, the components /., and /,: of the inertia tensor are
zero.

The forces and moments that influence the aerostatare caused by
one of the following sources: gravity, buoyancy, aerodynamics, and
tether tension. The translational and rotational equations of motion
of the aerostat can now be written as

(mg _ Fy)sin® | Fuy 4 Fpx 4 Fsq
+Fue 4 Fix — m(u +qw _rv)
_(mg _ Fy)singcos0 | Fuy | Fpy 4 Fsy 4 Fu, 4 F,
—m ru_ pw)
_(mg _ F}) cos® cost + Fy- + Fp. + F. + Fy. + Fi:
—mw 4 pv _ qu) “4)
_ZpFysin¢cos0 y My,  Mp 4 Ms: 4 My 4 M,
= Lap _ Uy _ Lgr _ L:(r 4 pg)
_xpFycos@cost _ 2, Fysinf | My,  Mpy | Ms,
LMy, My _ Iyyq _ (e _ L)) pr _ L:(r* _ p?)
_xpFysingcos® | My  Mp-  Ms: | My= 4 M-

— I.r _ (Ixx — In)pq _ Ix:(p _ qr) (5)

where Fy, Fp, Fs, Fy, F; and My, Mp, Ms, My, M, are the aero-
dynamic force and moment contributions from the hull, port fin,
starboard fin, upper fin, and tether and F} is the buoyancy force
appliedin the positive z direction of the inertial frame. The position
of the aerostat’s center of buoyancy is given by x, and z, while
mg is the weight of the aerostat acting in the negative z direction
of the inertial frame. The left-hand side of the equations represents
the external forces and moments acting on the aerostat, whereas the
right-hand side represents the aerostat’s motion.

2. Component Breakdown Method

The aerodynamic forces and moments on the aerostat are calcu-
lated by breaking down the aerostat into components with known
aerodynamic characteristics. This approach is based on the method
developed by Nahon for modeling of underwater vehicles.!" The in-
dividual components are the hull, denoted with an H, and the three
aft fins, denoted with an S, P, and U for the starboard, port, and
upper fins, respectively. The method for calculating the effects of
each componentis as follows: 1) calculate the motion at a reference
point on each component, 2) calculate the local angle of attack and
sideslip angle, 3) calculate the lift and drag forces and moments,
4) transform these forces to the body frame, and 5) sum up the
forces and moments.

To calculate the motion at a reference point on each component
requiressettingup a local frame on that component. The local frames
for the hull and the three fins are located at their centers of pressure.
The method for calculating the location of the center of pressure for
the hull will be describedin a later section.

3. Aerodynamic Forces of the Fins
For the fins the location of the center of pressure s taken to be at
their i‘-chord line midway from the base to the tip. The velocity of

the origin of the local frame of each fin with respect to the ground
V: can be found using the relationship:

V[=V3+w><r[ (6)

Once the velocity of the center of pressure of each component is
known, the correspondingairspeed can be obtained from

U _Vi_W @)

The local angle of attack @; and sideslip angle B; are calculated for
each component using the relationships

o; _ tan~' (wi/u;), Bi _ sin'(v;/U) (8)

where U; — _/(u? + v? + w?), For the vertical tail fin, definitions for
the sideslip angle B and the angle of attack @ are reversed because
the fin is vertical rather than horizontal.

The fins are approximated as NACA 0018 airfoils, and the forces
on each fin are characterized as lift L and drag D. The lift and
drag forces for the fins are dimensionalized using the following
equations:

L _toA,UCL,

i =9

D; _ ‘L,OAfU[ZCD )

where U; is the local airspeed of each fin. The two-dimensional
lift coefficient is assumed to depend linearly on the angle of attack
for the region 0 <o < oy, where Oy is the stall angle. The re-
gion of the lift curve past the stall angle, & > oy, is taken to be
flat with the lift coefficient retaining its maximum value. This is
consideredreasonablein the case of low-aspect-ratioairfoils.'> The
three-dimensionallift coefficient can be calculated for a particular
aspect ratio using"?

Cp — Cpra2, Cra — Cla{A/(A + [2(A +4)/(A + 2)])}

(10

The drag force on the fin is caused by parasitic drag and induced
drag. The drag coefficient Cp is calculated by includingboth effects
using the following equation:

Cp — Cno +c§/nAe (11)

It is important that if the airfoil has exceeded its stall angle the C,.
used in this equation is calculated using the actual attack angle o to
reflect the additional drag beyond the stall point.

Using theseequations, the liftand drag forces are orientedaccord-
ing to the relative velocity of the fin. The lift force L; is directed
normal to the direction of motion, whereas the drag force D; acts
in the opposite direction of the velocity vector. For use with the
equations of motion outlined earlier, these forces must be resolved
into the aerostat’s body frame. This can be achieved by first per-
forming a simple rotation about the fin’s local y axis. For inclusion
with the rotational equations of motion, the resulting moment M;
is calculated as the cross product of the fin force vector F; with a
position vector from the center of mass of the aerostat to the centre
of pressure of each fin as follows:

M[=r; XF[ (12)

4. Aerodynamic Forces of the Hull

Using the method of Jones and DeLaurier,” the aerodynamicinflu-
ence of the hull was estimated by a lift and drag force and a pitching
moment. The lift force Lz and the drag force Dy are considered to
be applied at the nose of the aerostat. The pitching moment about
the nose Miose accounts for the pitching tendencies of the aerostat.
These quantities are calculated using the following equations:

Ly — qo[lks _ k)1, sin(Qe) cos(e/2) + (Cd.),J; sin® sin |Of|]
Dy — qo[(Cd.)oSy cos* o _ (ks _ k)ni I, sin(2e) cos(e/2)]
Mnose = _610[(k3 — kl)nk13 Sil’l(za) COS(Q/Z)

_,_(Cdc)th sino sin|0f|] (13)
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Ly

b)

Fig. 3 Schematic of aerodynamic parameters of hull; a) original pa-
rameters and b) parameters with My, replaced by forces applied at
center of pressure.

where Uy — _/(u?, + v, + w?) is the airspeed at the hull reference
point. Also,
" dA " dA
L [ —dé_A and L _ [ §—d§
1= %: g =1 3 = %: &
In In

le/' 2rdé  and Jz=/ 2rE d (14)
0 0

The values for Iy, I3, Ji, and J, are based on the geometry of the
aerostat. To utilize these equations, it is required to split the aerostat
into two regions: the hull region, which extends from the nose to
the starting point of the fins, and the fin region from this point
to the tail. At § _1, the hull cross-sectional area is A;. Figure 3
shows a two-dimensional diagram of the aerostat and the various
aerodynamic parameters. The moment calculated about the nose
M. of the aerostatis notappropriatefor our simulation because the
equations of motion sum the moments at the center of gravity of the
aerostat.

To account for this, the force/moment system Lz, D, Muose was
replaced by an equivalent system at the aerostat’s center of pres-
sure. The center of pressure is the point at which the force/moment
system has zero moment. It is located along the centerline of the
aerostat at a distance from the nose, which is determined at each
time step of the simulation. The distance from the nose to the cen-
ter of pressure. x, is calculated by equating Myose to the moment
generated about the nose by the lift force L5 using the following
equation:

_Mnose — LH(_xn) (15)

Using the convention of Jones and DeLaurier,’ the orientation of
the lift and drag forces on the hull follows a different convention
from that of the fins. For the fins the forces are directed accord-
ing the fin’s motion, whereas the hull forces are directed accord-
ing to its body axis independent of the direction of motion. The
lift force acts perpendicular to the aerostat’s central axis (x direc-
tion in the body frame) while the drag force acts in the negative
x direction.

The configuration of the aerostat shown previously are for a two-
dimensional representation. Figure 4 shows the motion variables

yB

Fig. 4 Orientation of the hull motion and forces.

and hull forces for three-dimensional motion. The angle of attack
of the hull @ and the angle of the lift force in the y-z plane ¥ are
found using the motion variables as follows:

o _ cos un/Un) and Y _ tan~' (v /wp) (16)
To represent the aerodynamic forces in the body frame, the lift and
drag forces are rotated by the angle ¥. For the rotational equations
of motion, the resultant moment My about the center of mass can
be found using the equation

MH=rH><FH (17)

Added mass is included in the analysis for the hull by defining
the effective mass of the aerostat m,. as the sum of the true mass m
and the added mass m, as follows:

ne =m+ma (18)

where m, _ k; oV and k; is the added mass coefficient'* in the ap-
propriate direction.

B. Tether Model

The tether is used to constrain the motion of the aerostat, and
this must be accounted for in the dynamics model by combining the
aerostat and tether models. This work uses a lumped-mass model
of the tether in order to model its dynamic behavior. In this type of
model, which is discussed in more detail by Driscoll and Nahon,'?
the continuous cable is first discretized into elements. The mass of
each elementis lumped at its endpoints (called nodes). The internal
stiffness and damping characteristics of the cable are modeled as
lumped parameter stiffness and damping elements connecting those
nodes. This type of model, shown in Fig. 5, has been validated for a
variety of underwatersystems with excellentagreementwith in-field
measurements.'’

The position of each node is described with respect to an iner-
tial reference frame by a three-componentvector p; — [x; i Z[]T.
Each cable element is considered to be a straight elastic element,
subject to forces at its endpoints. This method of modeling allows
each cable element to possess distinct properties, such as density
and stiffness. The orientation of each cable element is represented
using a Z-Y-X (¥, 0, ¢) Euler angle set. Because the torsion of
the cable is not included in the model, the ¥ rotation about the
inertial Z axis is constrained to zero. The Euler angles 0; and ¢;
can be calculated from the coordinates of the appropriate nodal
endpoints.”®

1. Internal Forces

The internal forces acting within an element are caused by its vis-
coelastic properties. These are represented schematically in Fig. 5.
The tension in the cable caused by its structural stiffness is con-
sidered to act only in the tangential direction and is modeled by a
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node i+1

element i+1

Fig. 5 Schematic of viscoelas-
tic internal forces for the tether
model.

node i

element i

node i-1

Ys

F,

Fig. 6 Connection point of tether and aerostat.

linear tension-strainrelationship. The friction between the braids of
the cable tends to create a damping effect. This effect is assumed to
be linear with the strain rate. The total tension in a cable element as
a result of these effects is therefore written as

T, _ AEs | bs, e _ (1[ _l[“)/l[“ (19)

2. External Forces

The external forces acting on the cable element are those caused
by aerodynamicdrag and gravity. The drag force acting on the cable
element can be calculated according to Morison’s equation

D, _ tpCud,l! i “2 (20)

The velocityu; accountsnotonly forthe motion of the cableelement,
but also the motion of the surrounding air, thatis, u; —p; _ W. The
drag coefficient is modified by loading functions,” which account
for the nonlinear breakup of drag between the normal and tangential
directions. Once the drag for elements i and i 1 are calculated,
half of each value is applied to the ith node, which joins the two
elements. Finally, the gravitational force acting on a cable element
is applied, based on the element’s density and volume.

3. Tether Attachment Point

The coupling of the tether model and the aerostat model was
achieved by connecting the uppermost node of the tether to the
base of the aerostat’s flying lines, as shown in Fig. 6. The aerostat
and its flying lines (everything within the dashed box) are treated
as a single rigid body. Hence, the two flying lines shown can be
interpreted as rigid members. In reality, for an aerostat of this type
many flying lines would be present and arranged in a harness (see
Fig. 2) in order to rigidly secure the aerostat. It would be difficult
to incorporate the effects of the flexibility of a complex harness,
and therefore the rigid-body approximationis deemed adequate for
this level of investigation. The force from the top node of the tether
F, is included in the equations of motion of the aerostat. For the
rotational equations of motion, the moment from the tether force is

calculated using

Xt

M, _r F, where rn—_|0 21

bty

The actual location of the attachment point relative to the aerostat
can have a significant effect on the behavior of the aerostat. Aeros
Flightcam offered some general insights as to where to place the
tether attachment point, based on their experience with tethered
aerostats. It was recommended that, in the interests of stability, the
aerostat should have a pitched-up attitude of about 5 to 10 deg and
that the vertical distance of the attachment point from the aerostat
centerline z;, should be about 1‘;' times the aerostat diameter.

The distance x, was calculated to yield the selected pitch angle
by summing the moments about the aerostat’s center of mass in a
zero wind equilibrium position, as follows:

_Fy,x;, cosby +Fozp sinf, + Fix; cos 0y _ Fz,sinfy _0 (22)
which can be rearranged as

F F,
tan90 _ LoXp — TiXe (23)
Fpzy _ Fiz,

In the absence of wind, the buoyancy force Fj and the tether force
F; both act along the z direction of the Earth-fixed inertial frame.
These two forces along with the position of the center of buoyancy
xp and z, are all fixed quantities for the aerostat. Therefore, once
values for two of the other three remaining variables 0, x;, and z;
are selected this equation can be used to solve for the remaining
variable. For our purposes we selected a certain pitch angle 6y and
vertical tether attachment position z, and solved for the unknown
horizontal tether attachment position x;.

C. Physical Parameters

To solve the equations of motion outlined earlier, it is necessary
to define numerous physical parameters for this particular aerostat.
The relevant geometric properties of the Aeros aerostat are given in
Table 1. There is an internal air envelope used to regulate helium
pressure known as the “ballonet”. This is achieved by venting and
accumulating air using electric blowers. The blowers are located at
the base of the belly where the ballonet meets the hull. The tail fins
are made from the same material as the hull and are inflated with
helium. Multiple strands of nylon cord connect the face of each fin
to the face of the adjacent fin. The nylon cord is cinched tight, and
the tensionin the cords keeps the fins in place. The fins are arranged
in an inverted Y configuration. The two dihedral fins are offset by
an angle of 112.5 deg from the vertical fin.

To obtain the physical parameters of the aerostat, a three-
dimensional CAD model was generated using PRO-E. The CAD
model was constructed to represent accurately the actual aerostat,
complete with a thin-walled shell of the hull and ballonetenvelopes,
solid models of the gases contained within, and a plate that houses
the blowers. The appropriate density was assigned to each part,
and the various physical parameters were computed by PRO-E. The
mass and volume of the relevant parts are given in Table 1. Other
parameters of interest obtained in this manner are the location of
the aerostat’s center of buoyancy, the center of mass, and the inertia
tensor. The center of buoyancy was found by obtaining the center of
mass for a solid, homogenous aerostat with the proper dimensions.
From Table 1 it is noted that the mass of the gases are a significant
contribution to the overall mass of the aerostat. When modeling
lighter-than-air vehicles, it is essential to account for the mass of
these internal gases when determining any physical parameters.

1. Aerodynamic Parameters

The aerodynamic parameters used in the dynamics model must
be estimated for this particularaerostat. The location of the center of
pressure for each component was calculated using the explanation
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Table1 Physical parameters of Aeros aerostat

Parameter Value
Aerostat length, L 18.3 m
Helium volume 467.1 m*
Ballonet volume 522 m?
Total volume 519.3 m?
Helium mass 78.9kg
Air mass 64.2kg
Hull mass 115.6kg
Ballonet mass 25.6kg
Blowers mass 10.0 kg
Tail fin mass (all 3) 63.6 kg
Total mass 357.9kg
Density of air 1.229kg/m?
Density of helium 0.169 kg/m?
Buoyancy 6,260.7N
Net lift 2,749.7N
Aerostat diameter, D 7.7m
Center of mass (from nose)

Xem _8476m

Yem 0

Zem _0.491
Center of buoyancy

(from c.m.)

Xb 0.710 m

Yo 0

Zp 0.524m
Inertia tensor components

Lex 3,184kg . m?

Iyy 10,011 kg, m?

I- 9,808 kg . m?

Lz _ Iy _641kg m?

givenearlierandislistedin Table2. All distancesgivenare measured
from the aerostat’s center of mass.

As noted earlier, the aerostat was split into two regions: the hull
region, which includes everything from the nose to the start of the
fins, and the fin region, which includes the fins and the section of
the hull behind the start of the fins. The area for each fin A is the
cross-sectional area from the centerline of the aerostat to the tip of
the fin. The aspect ratio of the fins is defined as the square of the
distance from the aerostat’s centerline to the fin tip divided by A.
The value of C.« takes into account losses arising from the fins’
location at the rear of the vehicle. The flowfield in the vicinity of the
fins will have experienced disruptions from passing over the hull,
resulting in a reduction of the fins’ capability to produce lift.

The added mass coefficients k| and k3 were estimated using data
forellipsoids.”® The hull efficiency factor 7, was found by averaging
values given for three differentaerostats from Jones and DeLaurier.”
The crossflow drag coefficient for the hull (Cd,);, was estimated
using the drag coefficient for a cylinder. The estimation of the zero-
angle axial drag (Cd,)o was based on the drag coefficient for a
streamlined shape with a fineness ratio of 2.4 (Ref. 15), where the
fineness ratio is the length of the body divided by its maximum di-
ameter. The hull referencearea Sy is defined as the (hull Volume).z/ 3
The evaluation of the integral for /; gives the cross-sectional area
of the hull at the hull fin region boundary A,. The integral for J;
is equivalent to the cross-sectional area of the hull region of the
aerostatin the xz plane, which was found using the evaluation tools
of PRO-E on the CAD model. To obtain the integrals for /3 and J»,
the hull profile was approximated by a 10th-order polynomial, and
the integrals given in Eq. (14) were then evaluated numerically.

2. Tether Properties

The tether that was modeled has physical parameters listed in
Table 3. The Plasma tether is manufactured by Puget Sound Rope.
The manufacturer provided the data for the density and strength of
the cable. The damping ratio and elastic modulus were estimated
from experimental tests performed on a sample of Plasma tether.
The damping coefficient b used in the tether model is calculated
using the following equation:

b — &b, 24

Table2 Aerodynamic parameters of Aeros aerostat

Parameter Value

Center of pressure

Hull
Xh 8.476 _ x,
Vh 0
Zn 0.491 m
Vertical fin
Xv _4.92m
Yv 0
Zy 3.74 m
Port fin
Xp _492m
Yp 2.98m
Zp _0.706
Starboard fin
Xy _492m
Vs _298m
Zg _0.706
Fins
Af 30.0 m?
A 2.18
CLa 2.0
Cpo 0.012
Astall 11.0 deg
Hull
ki 0.16
k3 0.76
Nk 1.2714
(Cden 0.28
(Cdn)o 0.0394
Su 59.35m?
I 20.43 m?
I3 _170.51 m®
Ji 75.84 m?
J 433.85m’
Table3 Tether parameters
Parameter Value
Diameter, d; 6 mm
Density, 0/ 840 kg/m3
Elastic modulus, E 37.4 GPa
Damping ratio, { 0.017

III. Linear Stability Analysis

The nonlinear dynamics model of the streamlined aerostat on a
single tether is useful for obtaining time histories of the aerostat’s
motion in response to a particular wind input. However, in order to
acquire a quantitative assessment of the stability of the aerostat a
linear approximation of the system was derived, and its eigenvalues
and eigenvectors were studied.

The nonlinear dynamics simulation can be thought of as a set of
functional relationships where the derivative of each state variable
is dependent on the full set of state variables. This is demonstrated
by the following equation:

X_FX (25)

WhCI'CXZ [xl’ X1 Y1s Y1s Z1s Z1s oo o9 Xus Xns Yus Yuo Zns> Zns» ¢a ¢a
6, 0, ¥, ¥ is the state vector. It contains the positionand velocity
of all elements of the model, with respect to the inertial frame. This
includes each of the tether nodes as well as the aerostat. For the
aerostatnode there are an additional six state variables representing
its angular position and velocity. Therefore, the total number of state
variablesis 6n + 6, where n is the number of tether nodes. There are
no state variables for the bottom-most tether node becauseit is fixed
to the ground; hence, the translational variables with the subscript
n represent the aerostat node.

A. Linear Model
Linearizing Eq. (25) leads to

X _AX (26)
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Fig. 7 Comparison of linear and nonlinear simulation results of aerostat motion for case with single tether of L; =300 m and wind speed

W =10 m/s.

where the state matrix A is defined as

- O 4 i
BXI ax1 e aw
e | & &
A_ oF N ox; T oy 27
T X T . . ) .
af6n+6 af6n+6 af6n+6
BXI ax1 e aw

where F _[f1 f» --- fﬁ,,+5]T. The most direct method for ob-
taining the state matrix is to perform a numerical differentiation
by finite difference of the nonlinear differential equations. The first
step is to choose a reference equilibrium condition about which
the system will be linearized. Next, each state variableis perturbed
slightly from its equilibrium value. The ensuing response of every
state variable is observed and compared to its equilibrium value.
The difference between the response and the equilibrium value is
divided by the perturbationto approximate each element of the state
matrix. For example, in the case of the first element in the first row,
we have

% f/—flo

~ 28
e N A (28)

where f7 is the value of f; following a perturbation of a particular
state variable (in this case, x1), whereas fi, is the value of f; at the
reference equilibrium condition and Ax; is the perturbation value
of x1. The value for the perturbation is typically very small (10>
was used). The reference equilibrium condition is one in which
the tethered aerostat system is in a steady-state wind field in the
absence of turbulence. The process can be repeated for a variety of
wind speeds in the range of interest.

Once A is formed, it is necessary to verify its validity through
a comparison of the linear and nonlinear responses to a specified
initial condition. MATLAB® was used to obtain the linearresponse.
The nonlinear response was obtained using the nonlinear dynamics
model described in the preceding section. All six position variables
for the aerostat were simultaneously given an initial perturbation

from the equilibrium condition. The perturbation was 0.1 m for
the translational variables and 0.01 rad for the rotational variables.
The linear and nonlinear responses for the position variables are
shown in Fig. 7. The good agreement between the two responses
demonstrates the success of the linearization process and provides
justification for pursuing the linear stability analysis.

1. Decoupling

The stability of vehicle models is typically analyzed by decou-
pling the motion variables into lateral and longitudinal subsets.
The longitudinal variables are defined as translational motion in
the x and z directions and rotational motion about the y axis (i.e.,
Xiens Xtms Zlons Z1.m> 0, 0). The lateral variables are defined as
translational motion in the y direction and the rotational motion
about the x and z axes (i.e., Y1..n> Yi..o @@, ¥, V). For a teth-
ered aerostat symmetrical about the x-z plane, it can be shown that
longitudinal and lateral decoupling will occur. To ensure that this
holds true for our tethered aerostat system, the state vector and the
state matrix were rearranged to separate the longitudinaland lateral
systems. The new state vector X’ is as follows:

—X1 Y1
X1 i
o
Xlong B Vn
X _ , Xiong — | - | > X — (29)
[Xlat :| : ¢
Zp ¢
6 14
0 14

To be consistent with the new arrangement of X’, the state matrix
A must be rearranged by exchanging the appropriate row and col-
umn for each variable that was repositioned. Once this process is
complete, we can determine whether the longitudinal and lateral
variables are, in fact, decoupled. If the longitudinal and lateral sys-
tems are decoupled, the new state matrix A’ will be partitionedinto
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four distinct submatrices: a longitudinal submatrix Aiong, and a lat-
eral submatrix A, as well as two null submatrices. The dimensions
and location of each submatrix are as follows:
, [Along](4n +2) 5 (@ng2) [0] (4n 3 2), 2n4) (30)
= [ [0](2n+4) x @n 4 2) [Alat](2n+4) x (2n+4):|
For our system it was found that the lower left matrix was in fact
comprised of all zeros; however, the upper-right submatrix matrix
had several elements with small magnitudes. Because these values
were quite small (the largest being on the order of 10-*) compared
to the magnitude of the elements of the other matrices (the largest
being on the order of 10%), it can be concluded that the motion is
essentially decoupled. Therefore, the system can be analyzed as two
separate systems as follows:
Xlong = AlongXlong’ Xlat = AlatXlal (31)
2. Eigenvalues and Eigenvectors
The aerostat’s natural motion and stability are characterized by
the eigenvalues and eigenvectors of the corresponding state ma-
trix. Each eigenvalue (or pair of eigenvalues)representsa particular
mode of the motion, while its corresponding eigenvector provides
the relationship of each state variable in that mode. Eigenvalues can
exist either as complex conjugates denoted as A1,2 — 0 4. @y or as
distinct real numbers. A complex conjugate pair of eigenvalues in-
dicates that the mode is oscillatory, and a real eigenvalue indicates
nonoscillatory motion. For stability of the system, all of the real
parts of the eigenvalues must be negative. The damped frequency
w, is the imaginary part of the eigenvalue,and the natural frequency
and damping ratio are found from

w, _ \/02 + wga ; — sin@ — _U/wn (32)
Each eigenvalue of a complex conjugate pair has a conjugate that
is a reflection about the real axis. Both eigenvalues correspond to a
single mode with a particular frequency and damping ratio.

Each element of the corresponding eigenvector represents the
magnitude and phase of the response of a particular state variable.
If phasorrepresentationis used to display the elements of the eigen-
vectors, the radius corresponds to the magnitude of the response,
and the angle corresponds to the phase. The magnitude and phase
of the state variables obtained from the eigenvectors are relative
to each other and are not absolute. In the case of complex conju-
gateeigenvalues,the correspondingeigenvectorsconsistof complex
conjugates mirrored about the real axis.

B. Results

The cable was discretizedinto 10 elements, yielding longitudinal
and lateral subsystems of order 42 and 24, respectively. MATLAB®
was used to compute the eigenvalues and eigenvectors for Aiong and
A Because the number of modes was large (a total of 33), we chose
to only study the four lowest frequency modes in each subsystem
because the high-frequencymodes are not likely to yield significant
motion in the actual system.

The results for a baseline case are presented in Fig. 8. The condi-
tions for this case are tether length L, _ 300 m with a steady-state
pitchangle®, _ _4 deg (pitchednose up). All other physical param-
eters correspond to the values presented for the Aeros Aerostat in
Sec II. The wind model used had a wind speed constant with height.
The four longitudinal and four lateral modes considered here were
found to be stable over the full range of wind speeds. The remaining
modes omitted from the presentation were observed to be stable as
well.

To gain a better appreciation of the results, the eigenvectors for
each of the modes were studied in attempt to classify the motion.
Details of the classification of each lateral mode are as follows:

1) In the pendulum mode the eigenvectors for the position and
velocity of the tether nodes in the y direction, yi.., and yi..,, are
90 deg out of phase, and the amplitudes of both motion variablesin-
crease linearly from the base to the top of the tether. The magnitude

of the yaw rotation ¥ of the aerostatis appreciable, which suggests
that yawing motion is coupled with the pendulum oscillation. This
mode has by far the lowest frequency, which is expected for the
pendulum mode, considering the size of the system. The dramatic
increase in period with wind speed at W _ 2 m/s is likely caused by
the coupling of the pendulum motion and the yawing of the aero-
stat. The effects of this phenomenon appear to become saturated
at W _4 m/s. As the wind speed increases beyond 6 m/s, the pe-
riod decreases gradually, suggesting that the wind eventually over-
comes this coupling. At these higher speeds the lateral pendulum
mode behaves more like the longitudinal pendulum mode, which
decreases with wind speed. For wind speeds below 2 m/s, the eigen-
vector element representing the yaw of the aerostatis about270 deg
out of phase with the aerostat’s lateral position element. For wind
speeds beyond 4 m/s, the phase angle is between 55 and 90 deg.
The shift in phase is observed to increase dramatically the period
of the pendulum mode. This illustrates the importance of including
the cross coupling between the tether and aerostat in the dynamic
analysis.

2) In the rolling mode the dominant motion is the rolling of the
aerostatas large relative amplitudes of the roll angle ¢ and rotational
velocity ¢ are observed.

3) With the first tether harmonic the eigenvectorsfor the position
and velocity of the tether nodes are 90 deg out of phase. The magni-
tude of the position of the tether nodes is a maximum at the middle
node, which corresponds to a simple concave/convex shape.

4) With the secondtetherharmonicthe positionand velocity of the
tethernodes are 90 deg out of phase. The motion for the nodes under
node 5 and above node 5 are 180 deg out of phase. The magnitude
of the position of the tether is a maximum at nodes 2 and 7 and is
a minimum at node 5, which corresponds to an S-shaped tether. As
expected, the frequency of this mode is twice as high as the first
tether harmonic.

Classification of the longitudinal eigenvectors followed a similar
process. The characteristics and classification of the four lowest
frequency longitudinal modes are as follows:

1) For the pendulum mode the dominant motion variables are
the position and velocity of the tether nodes in the x direction,
X1.., and x;..,. The motion in the z direction is negligible. The
eigenvectorscorrespondingto x.., and x;..., are 90 deg out of phase.
The amplitudes of x;..,, and x,.., increase linearly from the base to
the top of the tether.

2) For the pitching mode the dominant motion is the pitching of
the aerostat as large relative amplitudes of the pitch angle € and
rotational velocity 6 are observed.

3) For the axial spring mode the dominantmotion variablesare the
position and velocity in z direction, Z;..., and Z;..,. The magnitudes
of the motion variables in the x direction are negligible.

4) For the first tether harmonic mode, like the pendulum mode,
the dominant motion variables are the position and velocity of the
tether nodes in the x direction, whereas the motion in the z direction
is negligible. The magnitude of the x position of the tether nodes
is a maximum at the middle node, which corresponds to a simple
concave/convex shape.

1. Reference Frequencies

The basic motion characteristics from the linear analysis can be
compared with the analytical solutions for an idealized tethered
aerostat, as a means of checkingthe validity of the dynamics model.
The analytical reference frequencies for the motion of a buoyant
mass on a string are obtained as follows:

For the pendulum mode:

F,
W, _ \/l’;mg (33)

meL,
For the axial spring mode:

w, _ \/EAt/meLt (34)
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Fig. 8 Longitudinal and lateral modes for baseline case with L; =300 m and 6y = _4 deg.

for the tether’s transverse mode for the nth harmonic'®:

nx B o mg 1.2 (35)
w, _ — [T n_1,2,...
- L[\/ pfAf -

For the pendulum modes the relevant effective mass for the longi-
tudinal case is in the x direction, and for the lateral case it is in the
y direction. For the axial spring mode the effective mass in the z di-
rectionis used. For the transverse modes added mass is not included
in determining the net lift of the aerostat given as Fj, _ mg because
the added mass only applies to the inertial properties of the aerostat.

The theoretical natural frequencies are used to find the theoretical
periods of each mode using 7, — 27 /w,. The results are presented
in Table 4 and compared to the periods given in Fig. 8 from the
linear analysisat W _ 1 m/s.

For the fundamental transverse tether mode the observed fre-
quencies from the linear model were identical for both the lon-
gitudinal and lateral cases. Close agreement is observed for all
modes with the exception of the lateral pendulum, which has a
difference of 7.2% with the theoretical value. This discrepancy
could be attributed to the fact that the comparison uses the results
from the linear model at W _ 1 m/s, whereas the theoretical period
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Fig. 9 Longitudinal and lateral modes for case with L; =33.3 m and 6y = _4 deg.

corresponds to a system with W _ 0. Overall, the good agreement
between the linear model and the theoretical oscillations provides
a first level of assurance of the general validity of the dynamics
model.

2. Changing the Tether Length

To assess the system’s sensitivity to changes in tether length, the
stability of the system with differenttether lengths was investigated.
Inthe target applicationof supporting a telescopereceiver, the tether
will likely be shorter than the 300 m used in the baseline case.

Therefore, the behavior of the aerostat with shorter tether lengths of
L, _ 100 and 33.3 m was studied. The results for L, _ 33.3 m are
givenin Fig. 9. Significant differences were found in the behaviorof
the system as the tether length was decreased. For the longitudinal
modes the pendulum, axial spring, and fundamental tether modes
all experience a reduction in damping as tether length shortens.
Laterally, there is also a reduction in the damping of the transverse
tether modes. There is little change observed in the two aerostat
rotational modes, which is expected because the motion of these
modes pertainprimarily to the aerostatand are thereforeindependent
of the tether length.
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Table4 Comparison of theoretical and linear model results for
period T, of certain oscillatory modes for baseline case

First Second
Longitudinal  Lateral  Axial tether tether
Model type pendulum  pendulum spring harmonic harmonic
Theoretical 439s 58.0s 2.96s 1.81s 0.90s
Linear model 444 62.2s 2.96s 1.78s 0.90s
% Difference 1.1 7.2 ~0 1.7 ~0

It appears that the reductionin dampingratio for the tether modes
(i.e., axial spring, tether harmonics) is the result of losing the ma-
jority of the damping influence from the wind. For the case with
L; _ 300 m, the damping of each tether mode increases appreciably
as wind speed increases,but for the case with L, _ 33.3 m the damp-
ing ratio experiences a much smaller increase as W increases. With
a shorter tether there is less material present to be affected by the
wind’s influence. Based on these results, it would appear that the
system in general is more stable with longer tether lengths.

There is also a distinct difference between the characteristics of
the lateral pendulum mode for the two cases with different tether
length. The shift to a lower-frequency oscillation occurs at a higher
wind speed for the shorter tether. Also, the damping for the short
tether case experiences a more gradual change and declines to a
much higher steady-state value at high wind speeds. This suggests
that the lateral pendulum motion for tethered the aerostat is more
stable with the shorter tether at high wind speeds. For low wind
speeds (W <4 m/s) the stability of this mode is better with the
longer tether length of L; — 300 m.

IV. Conclusions

A nonlinearmodel of a tethered aerostat was developed, based on
a lumped-massapproachfor the tether, and a componentbreakdown
approach for the aerostat. This model was then linearized to allow
an examination of the stability of the tethered aerostat in various
winds. The behavior observed at low wind speeds correlated well
with analytical predictions. It was found that the system remained
stable at all wind speeds and that the stability improved with in-
creasing wind speed for all modes of motion with the exception of
the lateral pendulummode. The stability of this mode increases with
an increase in wind speed until a certain critical point after which
the stability decreases eventuallyreaching a steady state. It was also
found that all modes of the system, again with the exception of the
lateral pendulum mode, became more stable with the longer tether.
The lateral pendulum mode has better stability with the longertether
at low wind speeds; however, at high wind speeds it appears more
stable with the shorter tether.
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